(本小题满分14分)已知椭圆:的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.⑴求椭圆C的方程;⑵设,、是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,求直线的斜率的取值范围;⑶在⑵的条件下,证明直线与轴相交于定点.
已知定义在上的函数= (Ⅰ)若,求实数的取值范围;(Ⅱ)若对上的任意都成立,求实数的取值范围;(Ⅲ)若在[m,n]上的值域是[m,n](m≠n),求实数的取值范围
经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80-2t(件),价格近似满足(元).(Ⅰ)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;(Ⅱ)求该种商品的日销售额y的最大值与最小值.
已知是函数的一个极值点.(Ⅰ)求实数的值;(Ⅱ)求函数的单调区间.
已知函数.(Ⅰ)若,求实数的取值范围;(Ⅱ)判断函数的奇偶性,并说明理由.
记函数的定义域为集合,函数的定义域为集合.求:(Ⅰ)集合,;(Ⅱ)集合,.