将一颗正方体的骰子先后抛掷2次(每个面朝上等可能),记下向上的点数,求:(1)求两点数之和为5的概率;(2)以第一次向上点数为横坐标,第二次向上的点数为纵坐标的点在圆的内部的概率.
(本小题满分12分) 已知函数f()=,当∈(-2,6)时,其值为正,而当∈(-∞,-2)∪(6,+∞)时,其值为负 (I)求实数的值及函数f()的解析式 (II)设F()= -f()+4+12,问取何值时,方程F()=0有正根?
(本小题满分12分) 已知等比数列的各项均为正数,且 (I)求的通项公式 (II)令,求数列的前n项和
(本题12分)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,M为线段AB的中点,将△ACD沿折起,使平面ACD⊥平面ABC,得到几何体D-ABC,如图2所示. (Ⅰ)求证:BC⊥平面ACD; (Ⅱ)求二面角A-CD-M的余弦值.
如图,四边形是直角梯形,∠=90°,∥,=1,=2,又=1, ∠=120°,⊥,直线与直线所成的角为60°. (Ⅰ)求证:平面⊥平面; (Ⅱ)求三棱锥的体积;
已知双曲线,过能否作一条直线,与双曲线交于两点,且点是线段中点?若能,求出的方程;若不能,请说明理由.