如图,管中放置着三根同样的绳子AA1、BB1、CC1;(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?(2)小明先从左端A、B、C三个绳头中随机选两个打一个结,再从右端A1、B1、C1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.
已知抛物线与x轴交点为A、B(点B在点A的右侧),与y轴交于点C.(1)试用含m的代数式表示A、B两点的坐标; (2)当点B在原点的右侧,点C在原点的下方时,若是等腰三角形,求抛物线的解析式;(3)已知一次函数,点P(n,0)是x轴上一个动点,在(2)的条件下,过点P作垂直于x轴的直线交这个一次函数的图象于点M,交抛物线于点N,若只有当时,点M位于点N的下方,求这个一次函数的解析式.
在△ABC中,,设c为最长边.当时,△ABC是直角三角形;当时,利用代数式和的大小关系,可以判断△ABC的形状(按角分类).(1)请你通过画图探究并判断:当△ABC三边长分别为6,8,9时,△ABC为____三角形;当△ABC三边长分别为6,8,11时,△ABC为______三角形. (2)小明同学根据上述探究,有下面的猜想:“当时,△ABC为锐角三角形;当时,△ABC为钝角三角形.” 请你根据小明的猜想完成下面的问题:当,时,最长边c在什么范围内取值时,△ABC是直角三角形、锐角三角形、钝角三角形?
如图,AB经过⊙O上的点C,且OA=OB,CA=CB,⊙O分别与OA、OB的交点D、E恰好是OA、OB的中点,EF切⊙O于点E,交AB于点F. (1)求证:AB是⊙O的切线;(2)若∠A=30°,⊙O的半径为2,求DF的长.
以下统计图、表描述了九年级(1)班学生在为期一个月的读书月活动中,三个阶段(上旬、中旬、下旬)日人均阅读时间的情况:(1)从以上统计图、表可知,九年级(1)班共有学生多少人?(2)求出图1中a的值;(3)从活动上旬和中旬的统计图、表判断,在这次读书月活动中,该班学生每日阅读时间 (填“普遍增加了”或“普遍减少了”);(4)通过这次读书月活动,如果该班学生初步形成了良好的每日阅读习惯,参照以上统计图、表中的数据,至读书月活动结束时,该班学生日人均阅读时间在0.5~1小时的人数比活动开展初期增加了多少人?
如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB的长.