如图,管中放置着三根同样的绳子AA1、BB1、CC1;(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?(2)小明先从左端A、B、C三个绳头中随机选两个打一个结,再从右端A1、B1、C1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.
解方程:
.解方程:
如图1,点C、B分别为抛物线C1:y1=x2+1,抛物线C2:y2=a2x2+b2x+c2的顶点.分别过点B、C作x轴的平行线,交抛物线C1、C2于点A、D,且AB=BD.(1)求点A的坐标:(2)如图2,若将抛物线C1:“y1=x2+1”改为抛物线“y1=2x2+b1x+c1”.其他条件不变,求CD的长和a2的值;(3)如图2,若将抛物线C1:“y1=x2+1”改为抛物线“y1=4x2+b1x+c1”,其他条件不变,求b1+b2的值 ▲ (直接写结果).
某蔬菜基地,一年中修建了一些蔬菜大棚,平均每公顷修建大棚要用的支架、塑料膜等固定材料的费用为27000元,此外还要购置喷灌设备,这项费用(元)与大棚面积(公顷)的平方成正比,比例系数为9000,每公顷大棚的年平均毛收入为75000元.(1)若该基地一年中的纯收益(扣除修建费用后)为60000元.一年中该基地修建了多少公顷蔬菜大棚?(2)若要使纯收益达到最大,请问应修建多少公顷大棚?并说明理由.
如图,△ABC内接于⊙O,AB=AC,弦AD交BC于点E,AE=4,ED=5.(1)求证:AD平分∠BDC;(2)求AC的长;(3)若∠BCD的平分线CI与AD相交于点I,求证:AI=AC.