如图,在三棱锥中,点分别是棱的中点. (1)求证://平面;(2)若平面平面,,求证:.
(本小题满分12分)已知点,为平面直角坐标系中的点,点P为线段EF的中点,当变化时,点P形成的轨迹与x轴交于点A,B(A点在左侧),与y轴正半轴交于点C.(1)求P点的轨迹的方程;(2)设点M是轨迹上任意一点(不在坐标轴上),直线CM交x轴于点D,直线BM交直线AC于点N.①若D点坐标为,求线段CM的长;②求证:为定值.
(本小题满分12分)在如图所示的几何体中,与都是边长为2的等比三角形且所在平面互相平行,四边形BCED为正方形,,O,G分别是BC,DE的中点.(1)证明:平面ADE平面AOFG;(2)求二面角D-AE-F的余弦值.
(本小题满分12分)已知在数列中,,,是函数的一个极值点.(1)证明:数列为等比数列,并求数列的通项公式;(2)是否存在指数函数,使得对于任意的正整数n有成立?若存在,求出满足条件的一个;若不存在,请说明理由.
(本小题满分12分)在中,角A,B,C的对边分别为a,b,c,若,,且.(1)求角B的大小;(2)若,求b的取值范围.
(本小题满分10分)已知函数满足,且函数与函数互为反函数.(1)求函数、解析式;(2)函数在上有零点,求实数m的取值范围.