椭圆的对称中心在坐标原点,一个顶点为,右焦点F与点 的距离为2。(1)求椭圆的方程;(2)是否存在斜率 的直线使直线与椭圆相交于不同的两点M,N满足,若存在,求直线l的方程;若不存在,说明理由。
在等比数列中,求的范围。
若椭圆与双曲线有相同的焦点,且椭圆与双曲线交于点,求椭圆及双曲线的方程.
已知命题;命题表示焦点轴上的椭圆,若,求实数的取值范围.
已知函数f(x)对任意实数x均有f(x)="k" f(x+2),其中常数k为负数,且f(x)在区间[0,2]有表达式f(x)=x(x-2)。 ⑴求f(-1),f(2.5)的值(用k表示); ⑵写出f(x)在[-3,2]上的表达式,并讨论f(x)在[-3,2]上的单调性(不要证明); ⑶求出f(x)在[-3,2]上最小值与最大值,并求出相应的自变量的取值。
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2m的进出口,如图所示已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元) ⑴将y表示为x的函数; ⑵写出f(x)的单调区间,并证明; ⑶根据⑵,试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。