为了迎接2010年在广州举办的亚运会,我市某体校计划举办一次宣传活动,届时将在运动场的一块空地ABCD(如图)上摆放花坛,已知运动场的园林处(P点)有一批鲜花,今要把这批鲜花沿道路PA或PB送到空地ABCD中去,且PA="200" m,PB="300" m,∠APB=60°. (1)试求A、B两点间的距离;(2)能否在空地ABCD中确定一条界线,使位于界线一侧的点,沿道路PA送花较近;而另一侧的点,沿道路PB送花较近?如果能,请说出这条界线是一条什么曲线,并求出其方程.
如图,圆O的直径AB=4,C为圆周上一点,BC=2,过C作圆O的切线l,过A作l的垂线AD,AD分别与直线l、圆O交于点D,E,求线段AE的长.
如图,AB是⊙O的直径,弦BD、CA的延长线相交于点E,EF垂直BA的延长线于点F.求证: (1)∠AED=∠AFD; (2)AB2=BE·BD-AE·AC.
已知数列{an}满足:a1=,an+1=(n∈N*). (1)求a2,a3的值; (2)证明:不等式0<an<an+1对于任意n∈N*都成立.
设m,n∈N*,f(x)=(1+2x)m+(1+x)n. (1)当m=n=2 011时,记f(x)=a0+a1x+a2x2+…+a2 011x2 011,求a0-a1+a2-…-a2 011; (2)若f(x)展开式中x的系数是20,则当m,n变化时,试求x2系数的最小值.
某校高一、高二两个年级进行乒乓球对抗赛,每个年级选出3名学生组成代表队,比赛规则是:①按“单打、双打、单打”顺序进行三盘比赛;②代表队中每名队员至少参加一盘比赛,但不能参加两盘单打比赛.若每盘比赛中高一、高二获胜的概率分别为,. (1)按比赛规则,高一年级代表队可以派出多少种不同的出场阵容? (2)若单打获胜得2分,双打获胜得3分,求高一年级得分ξ的概率分布列和数学期望.