已知函数.(1)求这个函数的图象在点处的切线方程;(2)讨论这个函数的单调区间.
(本小题满分12分)如图,在底面是正方形的四棱锥P—ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.(1)求证:BD⊥FG;(2)确定点G在线段AC上的位置,使FG//平面PBD,并说明理由.(3)当二面角B—PC—D的大小为时,求PC与底面ABCD所成角的正切值.
(本小题满分12分)某人玩掷正方体骰子走跳棋的游戏,已知骰子每面朝上的概率都是 ,棋盘上标有第0站,第1站,第2站,……,第100站。一枚棋子开始在第0站,选手每掷一次骰子,棋子向前跳动一次,若掷出朝上的点数为1或2,棋子向前跳一站;若掷出其余点数,则棋子向前跳两站,直到棋子跳到第99站(胜利大本营)或第100站(失败大本营)时,该游戏结束。设棋子跳到第n站的概率为 ; (1)求 ;(2) 求证: 为等比数列;(3)求玩该游戏获胜的概率。
.(本小题满分12分)在△ABC中,a,b,c分别是角A,B,C的对边,A为锐角,已知向量(1)若,求实数m的值。(2)若,求△ABC面积的最大值.
.本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中. (1)(选修4—2 矩阵与变换)(本小题满分7分)已知矩阵,向量.(Ⅰ) 求矩阵的特征值、和特征向量、;(Ⅱ)求的值.(2)(选修4—4 参数方程与极坐标)(本小题满分7分)在极坐标系中,过曲线外的一点(其中为锐角)作平行于的直线与曲线分别交于.(Ⅰ) 写出曲线和直线的普通方程(以极点为原点,极轴为轴的正半轴建系); (Ⅱ)若成等比数列,求的值.(3)(选修4—5 不等式证明选讲)(本小题满分7分)已知正实数、、满足条件,(Ⅰ) 求证:;(Ⅱ)若,求的最大值.
(本小题满分14分)已知函数f(x)=m(x-1)2-2x+3+lnx(m≥1).(Ⅰ)当时,求函数f(x)在区间[1,3]上的极小值;(Ⅱ)求证:函数f(x)存在单调递减区间[a,b];(Ⅲ)是否存在实数m,使曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值,若不存在,请说明理由.