有6名男医生,4名女医生.(1)选3名男医生,2名女医生,让这5名医生到5个不同地区去巡回医疗,共有多少种不同方法?(2)把10名医生分成两组,每组5人且每组都要有女医生,则有多少种不同分法?若将这两组医生分派到两地去,并且每组选出正副组长两人,又有多少种不同方案?
已知函数 (Ⅰ)求函数的最小正周期; (Ⅱ)确定函数在上的单调性并求在此区间上的最小值.
如图所示,四棱锥中,底面是个边长为的正方形,侧棱底面,且,是的中点. (I)证明:平面; (II)求三棱锥的体积.
中,角的对边分别为.已知. (I)求; (II)若,的面积为,且,求.
设的导数为,若函数的图象关于直线对称,且函数在处取得极值. (I)求实数的值; (II)求函数的单调区间.
已知椭圆的左右焦点分别是,离心率,为椭圆上任一点,且的最大面积为. (Ⅰ)求椭圆的方程; (Ⅱ)设斜率为的直线交椭圆于两点,且以为直径的圆恒过原点,若实数满足条件,求的最大值.