某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60) ...[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求成绩落在[70,80)上的频率,并补全这个频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分;(3)从成绩是70分以上(包括70分)的学生中选两人,求他们在同一分数段的概率.
(本小题8分) 已知集合A={x|1-a<x<1+a},B={x|-1<x<7},若A∩B=A,求a的取值范围.
(本小题12分) 已知, (1)判断的奇偶性并用定义证明; (2)当时,总有成立,求的取值范围.
(本小题8分) 设函数是定义域在的函数,且,对于任意的实数,都有,当>0时,. (1)求的值; (2)判断函数在的单调性并用定义证明; (3)若,解不等式.
已知椭圆的离心率为,椭圆上任意一点到右焦点的距离的最大值为。 (I)求椭圆的方程; (II)已知点是线段上一个动点(为坐标原点),是否存在过点且与轴不垂直的直线与椭圆交于、两点,使得,并说明理由。
(本小题满分14分)已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PA、PB、BC的中点. (I)求证:EF平面PAD; (II)求平面EFG与平面ABCD所成锐二面角的大小;