甲有一只放有x个红球,y个黄球,z个白球的箱子,乙有一只放有3个红球,2个黄球,1个白球的箱子,(1)两个各自从自己的箱子中任取一球,规定:当两球同色时甲胜,异色时乙胜。若用x、y、z表示甲胜的概率;(2)在(1)下又规定当甲取红、黄、白球而胜的得分分别为1、2、3分,否则得0分,求甲得分的期望的最大值及此时x、y、z的值。
(本小题满分14分)设椭圆:的离心率为,点(,0),(0,),原点到直线的距离为. (Ⅰ)求椭圆的方程; (Ⅱ)设直线:与椭圆相交于、不同两点,经过线段上点的直线与轴相交于点,且有,,试求面积的最大值.
(本小题满分14分) 某商场准备在国庆节期间举行促销活动,根据市场调查,该商场决定从种服装商品, 种家电商品, 种日用商品中,选出种商品进行促销活动. (Ⅰ)试求选出的种商品中至多有一种是家电商品的概率; (Ⅱ)商场对选出的某商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高元,同时,若顾客购买该商品,则允许有次抽奖的机会,若中奖,则每次中奖都获得数额为元的奖券.假设顾客每次抽奖时获奖的概率都是,若使促销方案对商场有利,则最少为多少元?
(本小题满分12分)如图,P是平面ADC外的一点,,,,. (1)求证:是直线与平面所成的角 (2)若,求二面角的余弦值.
(本小题满分12分) 如图,直线分抛物线与x轴所围图形为面积相等的两部分,求k的值.
(请考生在下面甲、乙两题中任选一题做答,如果多做,则按所做的甲题计分) 甲题: ⑴若关于的不等式的解集不是空集,求实数的取值范围; ⑵已知实数,满足,求最小值. 乙题: 已知曲线C的极坐标方程是=4cos。以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(是参数)。 ⑴将曲线C的极坐标方程化成直角坐标方程并把直线的参数方程转化为普通方程; ⑵若过定点的直线与曲线C相交于A、B两点,且,试求实数的值。