已知a、b、c分别是△ABC三个内角A、B、C的对边. (1)若△ABC面积为,c=2,A=60º,求a,b的值; (2)若acosA=bcosB,试判断△ABC的形状,证明你的结论.
工厂有一段旧墙长m,现准备利用这段旧墙为一面,建造平面图形为矩形,面积为m2的厂房,工程条件是:(1)建1m新墙费用为a元;(2)修1 m旧墙费用是元;(3)拆去1 m旧墙,用所得材料建1m新墙费用为元,经过讨论有两种方案: ①利用旧墙的一段(x<14)为矩形厂房一面的边长; ②矩形厂房利用旧墙的一面,矩形边长x≥14。 问:如何利用旧墙,即x为多少m时,建墙费用最省?①②两种方案哪种更好?
已知袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球个。若从袋子中随机抽取1个小球,取到标号为2的小球的概率为。 (1)求的值; (2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球的标号为,第二次取出的小球的标号为。 ①记“”为事件,求事件的概率; ②在区间内任取2个实数,求时间“恒成立”的概率.
三棱锥P−ABC中,PA⊥平面ABC,AB⊥BC。 (1)证明:平面PAB⊥平面PBC; (2)若,,PB与底面ABC成60°角,分别是与的中点,是线段上任意一动点(可与端点重合),求多面体的体积.
已知函数,的最大值为2。 (1)求函数在上的值域; (2)已知外接圆半径,,角所对的边分别是,求的值.
已知函数的周期为,且,将函数图像上的所有点的横坐标伸长为原来的倍(纵坐标不变),再将所得图像向右平移个单位长度后得到函数的图像. (1)求函数与的解析式; (2)是否存在,使得按照某种顺序成等差数列?若存在,请求出的值,若不存在,说明理由; (3)求实数与正整数,使得在内恰有2013个零点.