已知: 观察上述两式的规律,请你写出对任意角都成立的一般性命题并证明。
(本小题满分12分) 为了参加广州亚运会,从四支较强的排球队中选出18人组成女子排球国家队,队员来源人数如下表:
(Ⅰ)从这18名队员中随机选出两名,求两人来自同一支队的概率; (Ⅱ)中国女排奋力拼搏,战胜韩国队获得冠军.若要求选出两位队员代表发言,设其中来自北京队的人数为,求随机变量的分布列,及数学期望.
(本小题满分12分) 如图,四棱锥的底面为正方形,侧棱底面,且,分别是线段的中点. (Ⅰ)求证://平面; (Ⅱ)求证:平面; (Ⅲ)求二面角的大小.
(本小题满分10分) 在中,分别为角所对的三边,已知. (Ⅰ)求角的值; (Ⅱ)若,,求的长.
(本小题满分14分) 已知函数. (Ⅰ)若函数在定义域内为增函数,求实数的取值范围; (Ⅱ)当时,试判断与的大小关系,并证明你的结论; (Ⅲ) 当且时,证明:.
(本小题满分13分) 如图,已知抛物线,过点作抛物线的弦,. (Ⅰ)若,证明直线过定点,并求出定点的坐标; (Ⅱ)假设直线过点,请问是否存在以为底边的等腰三角形? 若存在,求出的个数?如果不存在,请说明理由.