在中,角、、所对的边分别是、、, 向量,且与共线.(1)求角的大小; (2)设,求的最大值及此时角的大小.
已知过抛物线的焦点,斜率为的直线交抛物线于,两点,且 (1)求该抛物线的方程; (2)为坐标原点,为抛物线上一点,若,求的值.
等差数列{an}的各项均为正数,a1=3,前n项和为Sn,{bn}为等比数列,b1=1,且b2S2=64,b3S3=960. (1)求an与bn; (2)求++…+.
已知函数在区间上的最大值为2. (1)求常数m的值; (2)在△ABC中,角A、B、C所对的边是a、b、c,若,△ABC面积为.求边长a.
在平面直角坐标系中,为坐标原点,已知曲线上任意一点(其中)到定点的距离比它到轴的距离大1. (1)求曲线的轨迹方程; (2)若过点的直线与曲线相交于A、B不同的两点,求的值; (3)若曲线上不同的两点、满足,求的取值范围.
在平面直角坐标系中,点与点关于原点对称,是动点,且直线与 的斜率之积等于. (Ⅰ)求动点的轨迹方程; (Ⅱ)设直线和与直线分别交于两点,问:是否存在点使得与的面 积相等?若存在,求出点的坐标;若不存在,请说明理由.