已知点 P 2 , 2 ,圆 C : x 2 + y 2 - 8 y = 0 ,过点 P 的动直线 l 与圆 C 交于 A , B 两点,线段 A B 的中点为 M , O 为坐标原点. (1)求 M 的轨迹方程 (2)当 O P = O M 时,求 l 的方程及 ∆ P O M 的面积
已知动圆() (1)当时,求经过原点且与圆相切的直线的方程; (2)若圆与圆内切,求实数的值.
已知函数f(x)=+ln x(a≠0,a∈R).求函数f(x)的极值和单调区间.
已知直线经过点. (1)若直线的方向向量为,求直线的方程; (2)若直线在两坐标轴上的截距相等,求此时直线的方程.
已知圆通过不同三点,且直线斜率为, (1)试求圆的方程; (2)若是轴上的动点,分别切圆于两点, ①求证:直线恒过一定点; ②求的最小值.
已知向量,(),函数,且图象上一个最高点为,与最近的一个最低点的坐标为. (1)求函数的解析式; (2)设为常数,判断方程在区间上的解的个数; (3)在锐角中,若,求的取值范围.