已知函数f(x)=ex-ax(a为常数)的图像与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1. (1)求a的值及函数f(x)的极值; (2)证明:当x>0时,x2<ex;
(3)证明:对任意给定的正数e,总存在x0,使得当x∈(x0,+∞)时,恒有x<cex.
如图,为抛物线的焦点,为抛物线内一定点,为抛物线上一动点,且的最小值为. (1)求该抛物线的方程; (2)如果过的直线交抛物线于、两点,且,求直线的倾斜角的取值范围.
已知圆,定点N(1,0),是圆上任意一点,线段的垂直平分线交于点,点的轨迹为曲线。 (Ⅰ)求曲线的方程; (2)若直线与曲线相交于,两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.
设椭圆的左、右焦点分别、,点是椭圆短轴的一个端点,且焦距为6,的周长为16. (Ⅰ)求椭圆的方程; (Ⅱ)求过点且斜率为的直线被椭圆所截的线段的中点坐标.
某校从高二年级学生中随机抽取60名学生,将其期中考试的政治成绩(均为整数)分成六段:,,…, 后得到如下频率分布直方图. (Ⅰ)求分数在内的频率; (Ⅱ)根据频率分布直方图,估计该校高二年级学生期中考试政治成绩的平均分; (Ⅲ)用分层抽样的方法在80分以上(含80分)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任意选取2人,求其中恰有1人的分数.不低于90分的概率.
酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量(简称血酒含量,单位是毫克/100毫升),当时,为酒后驾车;当时,为醉酒驾车.某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了200辆机动车驾驶员的血酒含量(如下表).依据上述材料回答下列问题:(1)分别写出酒后违法驾车发生的频率和酒后违法驾车中醉酒驾车的频率;(2)从酒后违法驾车的司机中,抽取2人,请一一列举出所有的抽取结果,并求取到的2人中含有醉酒驾车的概率.(酒后驾车的人用大写字母如表示,醉酒驾车的人用小写字母如表示)