如图,四棱锥P-ABCD中,ABCD为矩形,平面PAD⊥平面ABCD.
(1)求证:AB⊥PD
(2)若∠BPC=90o,PB=2,PC=2问AB为何值时,四棱锥P-ABCD的体积最大?并求此时平面PBC与平面DPC夹角的余弦值.
在平面内,不等式确定的平面区域为,不等式组确定的平面区域为.(1)定义横、纵坐标为整数的点为“整点”.在区域任取3个整点,求这些整点中恰有2个整点在区域的概率;(2)在区域每次任取个点,连续取次,得到个点,记这个点在区域的个数为,求的分布列和数学期望.
某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)(1)应收集多少位女生样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有的把握认为“该校学生的每周平均体育运动时间与性别有关”.
附:K2=
已知函数.(1)解不等式;(2)若,求证:
解关于不等式
设函数(1)若a>0,求函数的最小值;(2)若a是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,求f (x)>b恒成立的概率。