(已知an是首项为1,公差为2的等差数列,Sn表示an的前n项和. (1)求an及Sn; (2)设bn是首项为2的等比数列,公比q满足q2-a4+1q+S4=0,求bn的通项公式及其前n项和Tn.
(本题满分12分)求圆心在直线上,且经过圆与圆的交点的圆方程.
设平面直角坐标系中,设二次函数的图象与两坐标轴有三个交点,经过这三个交点的圆记为C.求:(1)求实数的取值范围;(2)求圆C 的方程;(3)问圆C 是否经过某定点(其坐标与无关)?请证明你的结论.
(本题满分10分) 若直线过点(0,3)且与抛物线y2=2x只有一个公共点,求该直线方程.
(本小题满分l2分)已知函数(1)若,求函数的极小值;(2)设函数,试问:在定义域内是否存在三个不同的自变量使得的值相等,若存在,请求出的范围,若不存在,请说明理由?
(本小题满分12分)如图,在平面直角坐标系中,椭圆的焦距为2,且过点.求椭圆的方程;若点,分别是椭圆的左、右顶点,直线经过点且垂直于轴,点是椭圆上异于,的任意一点,直线交于点(ⅰ)设直线的斜率为直线的斜率为,求证:为定值;(ⅱ)设过点垂直于的直线为.求证:直线过定点,并求出定点的坐标.