(本题满分10分) 若直线过点(0,3)且与抛物线y2=2x只有一个公共点,求该直线方程.
如果函数的定义域为R,对于定义域内的任意,存在实数使得成立,则称此函数具有“性质”。(1)判断函数是否具有“性质”,若具有“性质”,求出所有的值;若不具有“性质”,说明理由;(2)已知具有“性质”,且当时,求在上有最大值;(3)设函数具有“性质”,且当时,.若与交点个数为2013,求的值.
已知数列的各项都为正数,。(1)若数列是首项为1,公差为的等差数列,求;(2)若,求证:数列是等差数列.
已知,点依次满足。(1)求点的轨迹;(2)过点作直线交以为焦点的椭圆于两点,线段的中点到轴的距离为,且直线与点的轨迹相切,求该椭圆的方程;(3)在(2)的条件下,设点的坐标为,是否存在椭圆上的点及以为圆心的一个圆,使得该圆与直线都相切,如存在,求出点坐标及圆的方程,如不存在,请说明理由.
据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为.现已知相距18的A,B两家化工厂(污染源)的污染强度分别为,它们连线上任意一点C处的污染指数等于两化工厂对该处的污染指数之和.设().(1)试将表示为的函数; (2)若,且时,取得最小值,试求的值.
如图,正方形ABCD和三角形ACE所在的平面互相垂直,EF∥BD,AB=EF.(1)求证:BF∥平面ACE;(2)求证:BF⊥BD.