数列 { a n } 满足 a 1 = 1 , n a n + 1 = ( n + 1 ) a n + n ( n + 1 ) , n ∈ N + .
(1)证明:数列 { a n n } 是等差数列; (2)设 b n = 3 n · a n ,求数列 { b n } 的前 n 项和 S n .
(本小题满分12分)已知四棱锥P—ABCD中,平面ABCD,底面ABCD为菱形,,AB=PA=2,E、F分别为BC、PD的中点。(1)求证:PB//平面AFC;(2)求平面PAE与平面PCD所成锐二面角的余弦值。
(本小题满分12分)已知等差数列是递增数列,且满足(1)求数列的通项公式;(2)令,求数列的前项和
(本小题满分12分)已知集合(1)若;(2)若的充分条件,求实数的取值范围。
(本小题满分12分)某同学参加3门课程的考试,假设该同学第一门课程取得优秀成绩的概率为。第二、第三门课程取得优秀成绩的概率均为,且不同课程是否取得优秀成绩相互独立。(1)求该生恰有1门课程取得优秀成绩的概率;(2)求该生取得优秀成绩的课程门数X的期望。
(本小题满分13分)已知(其中e为自然对数的底数)。(1)求函数上的最小值;(2)是否存在实数处的切线与y轴垂直?若存在,求出的值,若不存在,请说明理由。