(本小题满分12分)某同学参加3门课程的考试,假设该同学第一门课程取得优秀成绩的概率为。第二、第三门课程取得优秀成绩的概率均为,且不同课程是否取得优秀成绩相互独立。(1)求该生恰有1门课程取得优秀成绩的概率;(2)求该生取得优秀成绩的课程门数X的期望。
已知x满足不等式2(log2x)2-7log2x+30,求函数f(x)=log2的最大值和最小值。(14分)
已知x[-3,2],求f(x)=的最小值与最大值。
(本小题满分10分)把所有正整数按上小下大,左小右大的原则排成如图所示的数表,其中第行共有个正整数,设表示位于这个数表中从上往下数第行,从左往右第个数.(1)求的值;(2)用表示;(3)记,求证:当时,
(本小题满分10分)在平面直角坐标系xOy中,已知点,P是动点,且三角形POA的三边所在直线的斜率满足kOP+kOA=kPA.(1)求点P的轨迹C的方程;(2)若Q是轨迹C上异于点P的一个点,且,直线OP与QA交于点M,问:是否存在点P使得△PQA和△PAM的面积满足?若存在,求出点P的坐标;若不存在,说明理由.