某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由形状为长方形A1B1C1D1的休闲区和环公园人行道(阴影部分)组成.已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米(如图所示).(1)若设休闲区的长和宽的比=x(x>1),求公园ABCD所占面积S关于x的函数S(x)的解析式;(2)要使公园所占面积最小,则休闲区A1B1C1D1的长和宽该如何设计?
杨辉是中国南宋末年的一位杰出的数学家、数学教育家,杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.下图是一个11阶杨辉三角:(1)求第20行中从左到右的第3个数;(2)若第行中从左到右第13与第14个数的比为,求的值;(3)写出第行所有数的和,写出阶(包括阶)杨辉三角中的所有数的和;(4)在第3斜列中,前5个数依次为1,3,6,10,15;第4斜列中,第5个数为35,我们发现,事实上,一般地有这样的结论:第斜列中(从右上到左下)前个数之和,一定等于第斜列中第个数.试用含有,的数学式子表示上述结论,并证明.
甲、乙两人在罚球线投球命中的概率分别为,且各次投球相互之间没有影响.(1)甲、乙两人在罚球线各投球一次,求这二次投球中恰好命中一次的概率;(2)甲、乙两人在罚球线各投球二次,求这四次投球中至少有一次命中的概率.
已知直线的参数方程为,曲线的极坐标方程为.(1)将直线的参数方程化为普通方程;以极点为直角坐标系的原点,极轴为轴正半轴,建立直角坐标系,且在两种坐标系中取相同的长度单位,将曲线的极坐标方程化为直角坐标方程;(2)若为直线上任一点,是曲线上任一点,求的最小值.
已知复数,且为纯虚数.(1)求复数;(2)若,求复数的模.
(本题满分14分) 设函数.(Ⅰ)当时,讨论函数的单调性;(Ⅱ)若函数仅在x=0处有极值,试求a的取值范围;(Ⅲ)若对于任何上恒成立,求b的取值范围.