已知等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别为等比数列{bn}的第2项、第3项、第4项.(1)求数列{an},{bn}的通项公式;(2)设数列{cn}对n∈N*,均有++…+=an+1成立,求c1+c2+c3+…+c2014的值.
((本题15分)两个人射击,甲射击一次中靶概率是,乙射击一次中靶概率是,(1)两人各射击一次,中靶至少一次就算完成目标,则完成目标概率是多少?(2)两人各射击2次,中靶至少3次就算完成目标,则完成目标的概率是多少?(3)两人各射击5次,是否有99%的把握断定他们至少中靶一次?
((本题15分) 在平面直角坐标系xOy中,已知点A(0,0),B(-2,0),C(-2,1)。设k为非零实数,矩阵M=,N=,点A、B、C在矩阵MN对应的变换下得到点分别为A1、B1、C1,△A1B1C1的面积是△ABC面积的2倍,(1)求k的值。(2)判断变换MN是否可逆,如果可逆,求矩阵MN的逆矩阵;如不可逆,说明理由.
(某有奖销售将商品的售价提高120元后允许顾客有3次抽奖的机会,每次抽奖的方法是在已经设置并打开了程序的电脑上按“Enter”键,电脑将随机产生一个 1~6的整数数作为号码,若该号码是3的倍数则顾客获奖,每次中奖的奖金为100元,运用所学的知识说明这样的活动对商家是否有利。
(已知圆的极坐标方程为:.将极坐标方程化为普通方程,写出圆的参数方程。若点P(x,y)在该圆上,求x+y的最大值和最小值。
已知,且正整数n满足,(1)求n ;(2)若,是否存在,当时,恒成立。若存在,求出最小的;若不存在,试说明理由。(3)若的展开式有且只有三个有理项,求。