某退休老师想为希望小学三年级(1)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)老师计划用1000元为全班40位同学每人购买一件学习用品(一个书包或一本词典)后,余下不少于100元且不超过120元的钱购买体育用品,共有哪几种购买书包和词典的方案?
如图是一个转盘,转盘被平均分成4等份,即被分成4个大小相等的扇形,4个扇形分别标有数字1、2、3、4,指针的位置固定,转动转盘后任其自由停止,每次指针落在每一扇形的机会均等(若指针恰好落在分界线上则重转).
(1)图中标有“1”的扇形至少绕圆心旋转 度能与标有“4”的扇形的起始位置重合;
(2)现有一本故事书,姐妹俩商定通过转盘游戏定输赢(赢的一方先看).游戏规则是:姐妹俩各转动一次转盘,两次转动后,若指针所指扇形上的数字之积为偶数,则姐姐赢;若指针所指扇形上的数字之积为奇数,则妹妹赢.这个游戏规则对双方公平吗?请利用树状图或列表法说明理由.
如图,抛物线 y = a x 2 + bx + 3 经过点 A ( − 1 , 0 ) 和点 B ( 4 , 0 ) ,且与 y 轴相交于点 C .点 D 是线段 BC 上的一个动点(不与点 B , C 重合),设点 D 的横坐标为 t ,过点 D 作 DE / / y 轴交抛物线于点 E ,点 F 在 DE 的延长线上,且 EF = DE ,过点 F 作 FG ⊥ 直线 BC ,垂足为点 G .
(1)求此抛物线的解析式和点 C 的坐标;
(2)设 ΔDFG 的周长为 L ,求 L 关于 t 的函数关系式;
(3)直线 m 经过点 C ,且直线 m / / x 轴,点 P 是直线 m 上任意一点,过点 P 分别作 PQ ⊥ 直线 BC , PR ⊥ x 轴,垂足分别为点 Q , R ,若以三点 P , Q , R 为顶点的三角形是等腰三角形,请直接写出点 P 的坐标.
如图①, ΔAOB ≅ ΔCOD ,延长 AB , CD 相交于点 E .
(1)求证: DE = BE ;
(2)将两个三角形绕点 O 旋转,当 ∠ AEC = 90 ° 时(如图② ) ,连接 BC 、 AD .取 BC 的中点 F ,连接 EF ,则线段 EF 、 AD 的数量关系为 ,位置关系为 ;
(3)将图②中的线段 EB , ED 同时绕点 E 顺时针方向旋转到图③所示位置,连接 AD 、 BC ,取 BC 的中点 F ,连接 EF ,请你判断(2)中的结论是否成立?若成立,请给出证明;若不成立,请说明理由.
某食品连锁店研制出一种新式月饼,每块成本为6元.试销一段时间后发现,若每块月饼的售价不超过10元,每天可销售300块;若每块月饼的售价超过10元,每提高1元,每天的销量就会减少30块.这家食品连锁店每天需要支付因生产这种月饼而产生的其他费用(不含月饼成本)200元.设每块月饼的售价为 x (元 ) ,食品连锁店每天销售这种月饼的纯收入为 y (元 ) .(注:纯收入 = 销售额 − 成本 − 其他费用)
(1)当每块月饼售价不超过10元时,请直接写出 y 与 x 之间的函数关系式: .当每块月饼售价超过10元时,请直接写出 y 与 x 之间的函数关系式: ;
(2)如果这种月饼每块的售价不超过12元,那么如何定价才能使该食品连锁店每天销售这种月饼的纯收入提高?最高纯收入为多少元?
如图,上午 9 : 00 时,甲、乙两船分别在 A 、 B 两处,乙船在甲船的正东方向,且两船之间的距离为33海里.甲船以30海里 / 时的速度沿北偏东 45 ° 方向匀速航行,乙船同时沿北偏东 30 ° 方向匀速航行.上午 11 : 00 时,甲船航行到 C 处,乙船航行到 D 处,此时乙船仍在甲船的正东方向.求两船之间的距离(结果精确到1海里).
(参考数据: 2 ≈ 1 . 41 , 3 ≈ 1 . 73 , 6 ≈ 2 . 45 )