某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?
(本题14分)已知抛物线 (1)填空:抛物线的顶点坐标是( ,),对称轴是 ; (2)已知y轴上一点A(0,-2),点P在抛物线上,过点P作PB⊥x轴,垂足为B.若△PAB是等边三角形,求点P的坐标; (3)在(2)的条件下,点M在直线AP上.在平面内是否存在点 N,使以点O、点A、点M、点N为顶点的四边形为菱形?若存在,直接写出所有满足条件的点N的坐标;若不存在,请说明理由.
(本题12分) 某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克. (1)当每千克涨价为多少元时,每天的盈利最多?最多是多少? (2)若商场只要求保证每天的盈利为4420元,同时又可使顾客得到实惠,每千克应涨价为多少元?
(本题10分)如图,在⊙O中,弧AB=60°,AB=6, (1)求圆的半径; (2)求弧AB的长; (3)求阴影部分的面积.
(本题10分)二次函数的图象如图所示,根据图象解答下列问题: (1)写出方程的两个根; (2)当x为何值时,y>0;y<0? (3)写出y随x的增大而减小的自变量x的取值范围.
(本题10分)如图,函数的图象与函数()的图象交于A(,1)B(1,)两点. (1)求函数的表达式; (2)观察图象,比较当时,与的大小.