已知:如图,在平面直角坐标系中,边长为的等边随着顶点A在抛物线上运动而运动,且始终有BC∥x轴.(1)当顶点A运动至与原点重合时,顶点C是否在该抛物线上?(2)在运动过程中有可能被x轴分成两部分,当上下两部分的面积之比为1∶8(即)时,求顶点A的坐标;(3)在运动过程中,当顶点B落在坐标轴上时,直接写出顶点C的坐标.
先化简再计算:,其中x是一元二次方程的正数根。
如图,每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上, ①写出A、B、C的坐标. ②以原点O为对称中心,画出△ABC关于原点O对称的△A1B1C1,并写出A1、B1、C1.
解方程:(2x+1)(x-4)=5
(2-3)+(2+)(2-)
配方法可以用来解一元二次方程,还可以用它来解决很多问题。例如:因为,所以,即:有最小值1,此时;同样,因为,所以,即有最大值6,此时。 ①当=时,代数式有最(填写大或小)值为。②当=时,代数式有最(填写大或小)值为。 ③矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?