某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶,假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.
已知函数. (1)若x=2是函数f(x)的极值点,求曲线y=f(x)在点(1,f(1))处的切线方程; (2)若函数f(x)在上为单调增函数,求a的取值范围; (3)设m,n为正实数,且m>n,求证:.
已知A、B分别是椭圆的左右顶点,右焦点与抛物线的焦点F重合. (1)求椭圆C的方程; (2)已知点P是椭圆C上异于A、B的动点,直线l过点A且垂直于x轴,若过F作直线FQ垂直于AP,并交直线l于点Q,证明:Q、P、B三点共线.
如图所示,AD⊥平面ABC,CE⊥平面ABC,AC=AD=AB=1,,凸多面体ABCED的体积为,F为BC的中点. (1)求证:AF∥平面BDE; (2)求证:平面BDE⊥平面BCE.
某同学用“五点法”画函数在某一个周期的图象时,列表并填入了部分数据,如下表: (1)请求出上表中的,,,并直接写出函数f(x)的解析式; (2)将f(x)的图象沿x轴向右平移个单位得到函数g(x),若函数g(x)在(其中)上的值域为,且此时其图象的最高点和最低点分别为P,Q,求与夹角的大小.
近两年来,各大电视台都推出了由明星参与的游戏竞技类节目。高一某研究性学习小组在长沙某社区对50人进行第一时间收看该类节目与性别是否有关的收视调查,其中20名女性中有15名第一时间收看该类节目,30名男性中10名第一时间收看该类节目. (1)根据以上数据建立一个列联表,并判断第一时间收看该类节目是否与性别有关? (2)该研究性学习小组共有A、B、C、D和E五名同学,五人分成两组模拟“撕名牌”的游戏,其中一组三人,一组两人,求A、B两同学分在同一组的概率. 参考数据:. 临界值表: