已知数列满足:且.(1)求数列的通项公式;(2)令,数列的前项和为,求证:时,且
(本小题满分16分)设函数f(x)=x4+bx2+cx+d,当x=t1时,f(x)有极小值. (1)若b=-6时,函数f(x)有极大值,求实数c的取值范围; (2)在(1)的条件下,若存在实数c,使函数f(x)在闭区间[m-2,m+2]上单调递增,求实数m的取值范围; (3)若函数f(x)只有一个极值点,且存在t2∈(t1,t1+1),使f ′(t2)=0,证明:函数g(x)=f(x)-x2+t1x在区间(t1,t2)内最多有一个零点.
解关于的不等式:
正定中学组织东西两校学生,利用周日时间去希望小学参加献爱心活动,东西两校均至少有1名同学参加。已知东校区的每位同学往返车费是3元, 每人可为5名小学生服务;西校区的每位同学往返车费是5元,每人可为3位小学 生服务。如果要求西校区参加活动的同学比东校区的同学至少多1人,且两校区同 学去希望小学的往返总车费不超过37元。怎样安排东西两校参与活动同学的人数, 才能使受到服务的小学生最多?受到服务的小学生最多是多少?
已知数列满足,. (1)求数列的通项公式; (2)设,求数列的前n项和Tn.
已知,其中向量. (1)求函数的最小正周期; (2)当时,求函数的值域.