已知椭圆的离心率为,为椭圆在轴正半轴上的焦点,、两点在椭圆上,且,定点.(1)求证:当时;(2)若当时有,求椭圆的方程;(3)在(2)的椭圆中,当、两点在椭圆上运动时,试判断 是否有最大值,若存在,求出最大值,并求出这时、两点所在直线方程,若不存在,给出理由.
如图,在矩形中,,点在边上,点在边上,且,垂足为,若将沿折起,使点位于位置,连接,得四棱锥.(1)求证:平面平面;(2)若,直线与平面所成角的大小为,求直线与平面所成角的正弦值.
已知 , 其中 (1)当时,求函数的最大值和最小值,并写出相应的的值.(2)若在R上恒为增函数,求实数的取值范围.
已知是关于的二次方程的两个实数根,求:(1)的值;(2)的值.
已知命题:直线与抛物线有两个交点;命题:关于的方程有实根.若为真命题, 为假命题,求实数的取值范围.
如图,椭圆:()和圆,已知圆将椭圆的长轴三等分,且圆的面积为.椭圆的下顶点为,过坐标原点且与坐标轴不重合的任意直线与圆相交于点,直线与椭圆的另一个交点分别是点.(1)求椭圆的方程;(2)(Ⅰ)设的斜率为,直线斜率为,求的值;(Ⅱ)求△面积最大时直线的方程.