已知命题:直线与抛物线有两个交点;命题:关于的方程有实根.若为真命题, 为假命题,求实数的取值范围.
(12分)若存在实数和,使得函数与对其定义域上的任意实数分别满足:,则称直线为与的“和谐直线”.已知为自然对数的底数); (1)求的极值; (2)函数是否存在和谐直线?若存在,求出此和谐直线方程;若不存在,请说明理由.
已知函数满足,且在上单调递增. (1)求的解析式; (2)若在区间上的最小值为,求实数的值.
已知的反函数为. (1)若函数在区间上单增,求实数的取值范围; (2)若关于的方程在内有两个不相等的实数根,求实数的取值范围.
已知是定义在上的奇函数,当时,,其中是自然对数的底数. (1)求的解析式; (2)求的图象在点处的切线方程.
集合, (1)求; (2)若,求实数的取值范围