如图,已知二次函数的图像过点和,直线,直线(其中,为常数);若直线与函数的图像以及直线与函数以及的图像所围成的封闭图形如阴影所示.(1)求;(2)求阴影面积关于的函数的解析式;(3)若过点可作曲线的三条切线,求实数的取值范围.
已知M=,N=,设曲线y=sinx在矩阵MN对应的变换作用下得到曲线F,求F的方程.
如图,已知AB为圆O的直径,BC切圆O于点B,AC交圆O于点P,E为线段BC的中点.求证:OP⊥PE.
设函数f (x)的定义域为M,具有性质P:对任意x∈M,都有f (x)+f (x+2)≤2f (x+1). (1)若M为实数集R,是否存在函数f (x)=ax (a>0且a≠1,x∈R) 具有性质P,并说明理由; (2)若M为自然数集N,并满足对任意x∈M,都有f (x)∈N. 记d(x)=f (x+1)-f (x). (ⅰ) 求证:对任意x∈M,都有d(x+1)≤d(x)且d(x)≥0; (ⅱ) 求证:存在整数0≤c≤d(1)及无穷多个正整数n,满足d(n)=c.
设非常数数列{an}满足,n∈N*,其中常数α,β均为非零实数,且 α+β≠0. (1)证明:数列{an}为等差数列的充要条件是α+2β=0; (2)已知α=1,β=, a1=1,a2=,求证:数列{| an+1-an-1|} (n∈N*,n≥2)与数列{n+} (n∈N*)中没有相同数值的项.
在平面直角坐标系xOy中,如图,已知椭圆C:+=1的上、下顶点分别为A、B,点P在椭圆C上且异于点A、B,直线AP、PB与直线l:y=-2分别交于点M、N. (1)设直线AP、PB的斜率分别为k1,k2,求证:k1·k2为定值; (2)求线段MN长的最小值; (3)当点P运动时,以MN为直径的圆是否经过某定点?请证明你的结论.