如图,已知二次函数的图像过点和,直线,直线(其中,为常数);若直线与函数的图像以及直线与函数以及的图像所围成的封闭图形如阴影所示.(1)求;(2)求阴影面积关于的函数的解析式;(3)若过点可作曲线的三条切线,求实数的取值范围.
(本大题14分)已知函数定义域为,且满足.(Ⅰ)求解析式及最小值;(Ⅱ)求证:,。 (Ⅲ)设。求证:,.
(本小题满分14分)已知数列是公差不为零的等差数列,,且、、成等比数列. (Ⅰ)求数列的通项公式;(Ⅱ)设,数列的前项和为,求证:
(本小题满分13分)已知空间向量,,·=,∈(0,).(1)求及,的值;(2)设函数,求的最小正周期和图象的对称中心坐标;(3)求函数在区间 上的值域.
(本小题满分12分)某出版社新出版一本高考复习用书,该书的成本为元一本,经销过程中每本书需付给代理商元的劳务费,经出版社研究决定,新书投放市场后定价为元一本,,预计一年的销售量为万本.(Ⅰ)求该出版社一年的利润(万元)与每本书的定价的函数关系式;(Ⅱ)若时,当每本书的定价为多少元时,该出版社一年利润最大,并求出的最大值.
(本小题满分12分)在△中,角的对边分别为,已知,且,,求: (Ⅰ)(II)△的面积.