有四张背面相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.(1)用画树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.
阅读下列例题的解题过程,给出问题的解答. 已知a2-4a-2=0,求a3-3a 2-6a+30的值.
已知:∠A的余角是它的2倍,求∠A的度数.
根据下列证明过程填空: (1)如图,已知直线EF与AB、CD都相交,且AB∥CD,试说明∠1=∠2的理由. 解:∵AB∥CD (已知) ∴∠2=∠3() ∵∠1=∠3() ∴∠1=∠2( 等量代换 ) (2)如图,已知:△AOC≌△BOD,试说明AC∥BD成立的理由. 解:∵△AOC≌△BOD ∴∠A=() ∴AC∥BD ()
先化简,再求值:,其中
计算:(1); (2)2011×2013-20122 (利用乘法公式计算)