在平面直角坐标系中,已知椭圆的焦点在轴上,离心率为,且经过点.(1)求椭圆的标准方程;(2) 以椭圆的长轴为直径作圆,设为圆上不在坐标轴上的任意一点,为轴上一点,过圆心作直线的垂线交椭圆右准线于点.问:直线能否与圆总相切,如果能,求出点的坐标;如果不能,说明理由.
已知函数. (1)求函数的最小正周期和单调递增区间; (2)当时,求函数的值域.
已知函数的定义域为[2,3],值域为[1,4];设. (1)求a,b的值; (2)若不等式在上恒成立,求实数k的取值范围; (3)若有三个不同的实数解,求实数k的取值范围.
已知,m是是实常数, (1)当m=1时,写出函数的值域; (2)当m=0时,判断函数的奇偶性,并给出证明; (3)若是奇函数,不等式有解,求a的取值范围.
某投资公司计划投资A,B两种金融产品,根据市场调查与预测,A产品的利润与投资量成正比,其关系如图1,B产品的利润与投资量的算术平方根成正比例,其关系如图2,(注:利润与投资量单位:万元) (1)分别将A,B两产品的利润表示为投资量的函数关系式; (2)该公司已有10万元资金,并全部投入A,B两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?
计算题 (1)求值: (2)求不等式的解集:①②