给定数列(1)判断是否为有理数,证明你的结论;(2)是否存在常数.使对都成立? 若存在,找出的一个值, 并加以证明; 若不存在,说明理由.
(本小题満分14分) 已知函数图像上的点处的切线方程为. (1)若函数在时有极值,求的表达式 (2)若函数在区间上单调递增,求实数的取值范围
本小题満分14分) 如图,△OAB是边长为2的正三角形,记△OAB位于直线左侧的图形的面积为。试求函数的解析式,并画出函数的图象.
(本小题15分) 如图在三棱锥P-ABC中,PA分别在棱, (1)求证:BC (2)当D为PB中点时,求AD与平面PAC所成的角的余弦值; (3)是否存在点E,使得二面角A-DE-P为直二面角,并说明理由。
(本小题15分) 已知函数有极值. (1)求的取值范围; (2)若在处取得极值,且当时,恒成立,求的取值范围.
(本小题14分) 如图,在四棱锥V-ABCD中底面ABCD是正方形,侧面VAD是正三角形,平面VAD (1)证明:AB; (2)求面VAD与面VDB所成的二面角的余弦值。