已知椭圆的右焦点为,离心率,是椭圆上的动点.(1)求椭圆标准方程;(2)若直线与的斜率乘积,动点满足,(其中实数为常数).问是否存在两个定点,使得?若存在,求的坐标及的值;若不存在,说明理由.
已知函数,其中. 若曲线在点处的切线方程为,求函数的解析式;
如图,A为椭圆上的一个动点,弦AB、AC分别过焦点F1、F2,当AC垂直于x轴时,恰好有AF1:AF2=3:1. (Ⅰ) 求椭圆的离心率;(Ⅱ) 设. ①当A点恰为椭圆短轴的一个端点时,求的值; ②当A点为该椭圆上的一个动点时,试判断是否 为定值?若是,请证明;若不是,请说明理由.
设、分别是椭圆的左、右焦点. (1)若是该椭圆上的一个动点,求·的最大值和最小值; (2)设过定点的直线与椭圆交于不同的两点、,且∠为锐角(其中为坐标原点),求直线的斜率的取值范围.
设函数.(Ⅰ)若曲线在点处与直线相切,求的值;(Ⅱ)求函数的单调区间与极值点.
求函数的值域