已知函数f(x)=ax-ln x,g(x)=,它们的定义域都是(0,e],其中e是自然对数的底e≈2.7,a∈R.(1)当a=1时,求函数f(x)的最小值;(2)当a=1时,求证:f(m)>g(n)+对一切m,n∈(0,e]恒成立;(3)是否存在实数a,使得f(x)的最小值是3?如果存在,求出a的值;如果不存在,说明理由.
设函数(其中),区间.(Ⅰ)定义区间的长度为,求区间的长度;(Ⅱ)把区间的长度记作数列,令,(1)求数列的前项和;(2)是否存在正整数,(),使得,,成等比数列?若存在,求出所有的,的值;若不存在,请说明理由.
如图,山顶有一座石塔,已知石塔的高度为.(1)若以为观测点,在塔顶处测得地面上一点的俯角为,在塔底处测得处的俯角为,用表示山的高度;(2)若将观测点选在地面的直线上,其中是塔顶在地面上的射影. 已知石塔高度,当观测点在上满足时看的视角(即)最大,求山的高度.
已知,函数(1)求函数的最小值和最小正周期;(2)设的内角的对边分别为,且,,若,求的面积.
等比数列的前项和为,公比,已知.(1)求数列的通项公式;(2)若分别为等差数列的第4项和第16项,试求数列的通项公式及前项和.
某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.