甲、乙、丙三位同学彼此独立地从A、B、C、D、E五所高校中,任选2所高校参加自主招生考试(并且只能选2所高校),但同学甲特别喜欢A高校,他除选A校外,在B、C、D、E中再随机选1所;同学乙和丙对5所高校没有偏爱,都在5所高校中随机选2所即可.(1)求甲同学未选中E高校且乙、丙都选中E高校的概率;(2)记X为甲、乙、丙三名同学中未参加E校自主招生考试的人数,求X的分布列及数学期望.
已知命题p:关于x的方程有两个不相等的负根. 命题q:关于x的方程无实根,若为真,为假,求的取值范围.
a,b,c为△ABC的三边,其面积=12,bc=48,b-c=2,求a.
双曲线的中心在原点,右焦点为,渐近线方程为. (Ⅰ)求双曲线的方程;(Ⅱ)设直线:与双曲线交于、两点,问:当为何值时,以为直径的圆过原点;
已知抛物线y2=-x与直线y=k(x+1)相交于A、B两点. (Ⅰ)求证:OA⊥OB;(Ⅱ)当△OAB的面积等于时,求k的值.
某研究所计划利用“神七”宇宙飞船进行新产品搭载实验,计划搭载新产品、,该所要根据该产品的研制成本、产品重量、搭载实验费用、和预计产生收益来决定具体安排.通过调查,有关数据如下表:
如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?