如图,四棱锥中,,,,平面⊥平面,是线段上一点,,.(1)证明:⊥平面;(2)若,求直线与平面所成角的正弦值.
如图,某小区拟在空地上建一个占地面积为平方米的矩形休闲广场,按照设计要求,休闲广场中间有两个完全相同的矩形绿化区域,周边及绿化区域之间是道路(图中阴影部分),道路的宽度均为米.怎样设计矩形休闲广场的长和宽,才能使绿化区域的总面积最大?并求出其最大面积.
如图,△ABC中,.求AC的长.
设一元二次不等式的解集为.(Ⅰ)当时,求;(Ⅱ)当时,求的取值范围.
(本小题满分12分)某小型餐馆一天中要购买两种蔬菜,蔬菜每公斤的单价分别为2元和3 元.根据需要,蔬菜至少要买6公斤,蔬菜至少要买4公斤,而且一天中购买这两种蔬菜的总费用不能超过60元.如果这两种蔬菜加工后全部卖出,两种蔬菜加工后每公斤的利润分别为2元和1元,餐馆如何采购这两种蔬菜使得利润最大,利润最大为多少元?
(本小题满分10分)在中,角所对的边分别为.已知,,.(Ⅰ)求的值;(Ⅱ)求的面积.