已知双曲线的两个焦点为、点在双曲线C上.(1)求双曲线C的方程;(2)记O为坐标原点,过点Q (0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为求直线l的方程.
已知函数f(x)=x2+2ax+3,x∈[-4,6]. (1)当a=-2时,求f(x)的最值; (2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;
已知函数,请用定义证明在上为减函数.
如图,三棱柱的所有棱长都为,且平面,为中点. (Ⅰ)求证:面; (Ⅱ)求二面角的大小的余弦值; (Ⅲ)求点到平面的距离.
设椭圆的左焦点为,直线与轴交于点,过点且倾斜角为30°的直线交椭圆于两点. (Ⅰ)求直线和椭圆的方程; (Ⅱ)求证:点在以线段为直径的圆上; (Ⅲ)在直线上有两个不重合的动点,以为直径且过点的所有圆中,求面积最小的圆的半径长.
已知三棱锥的三视图如图所示. (Ⅰ)求证:是直角三角形;求三棱锥是全面积; (Ⅲ)当点在线段上何处时,与平面所成的角为.