2014年11月10日APEC会议在北京召开,某服务部需从大学生中招收志愿者,被招收的志愿者需参加笔试和面试两部分,把参加笔试的60名大学生按成绩分组:第1组[75,80)有3人,第2组[80,85)有21人,第3组[85,90)有18人,第4组[90,95)有12人,第5组[95,100)有6人(1)现决定在笔试成绩较高的第3、4、5组中用分层抽样抽取12人进行面试,则第3、4、5组各抽取多少人?(2)已知甲和乙的成绩均在第5组,在(1)的条件下,求甲、乙至少有1人进入面试的概率.
(本小题满分10分)选修4-1 :几何证明选讲 直线交圆于两点,是直径,平分,交圆于点,过作于。 (Ⅰ)求证:是圆的切线; (Ⅱ)若,求的面积。
(本小题满分12分)已知函数, (Ⅰ)求函数的单调区间和极值; (Ⅱ)若对任意的,恒有成立,求的取值范围; (Ⅲ)证明:().
(本小题满分12分)已知椭圆C:(a>b>0)与y轴的交点为A,B(点A位于点B的上方),F为左焦点,原点O到直线FA的距离为b. (Ⅰ)求椭圆C的离心率; (Ⅱ)设b=2,直线y=kx+4与椭圆C交于不同的两点M,N,求证:直线BM与直线AN的交点G在定直线上.
(本小题满分12分)如图,四棱锥,侧面是边长为的正三角形,且与底面垂直,底面是的菱形,为的中点. (Ⅰ)求证:; (Ⅱ)求点到平面的距离.
(本小题满分12分)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):
(Ⅰ)试估计厨余垃圾投放正确的概率; (Ⅱ)试估计生活垃圾投放错误的概率; (Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为,其中,.当数据的方差最大时,写出的值(结论不要求证明),并求此时的值.(注:方差,其中为的平均数)