以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐极系,并在两种坐极系中取相同的长度单位.已知直线的极坐标方程为(),它与曲线(为参数)相交于两点A和B,求AB的长.
现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答. (I)求张同学至少取到1道乙类题的概率; (II)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是 3 5 ,答对每道乙类题的概率都是 4 5 ,且各题答对与否相互独立.用 X 表示张同学答对题的个数,求 X 的分布列和数学期望.
如图, A B 是圆的直径, P A 垂直圆所在的平面, C 是圆上的点.
(I)求证平面 P A C ⊥ 平面 P B C ; (II)若 A B = 2 , A C = 1 , P A = 1 ,求证:二面角 C - P B - A 的余弦值.
设向量 a = 3 sin x , sin x , b = cos x , sin x , x ∈ 0 , π 2 .
(I)若 a = b ,求 x 的值.
(II)设函数 f ( x ) = a ⇀ · b ⇀ ,求 f ( x ) 的最大值.
已知 a > 0 ,函数 f ( x ) = x - a x + 2 a . (I)记 f ( x ) 在区间 [ 0 , 4 ] 上的最大值为 g ( a ) ,求 g ( a ) 的表达式; (II)是否存在 a ,使函数 y = f ( x ) 在区间 ( 0 , 4 ) 内的图像上存在两点,在该两点处的切线相互垂直?若存在,求 a 的取值范围;若不存在,请说明理由.
过抛物线 E : x 2 = 2 p y p > 0 的焦点 F 作斜率分别为 k 1 , k 2 的两条不同的直线 l 1 , l 2 ,且 k 1 + k 2 = 2 , l 1 与 E 相交于点 A , B , l 2 与 E 相交于点 C , D .以 A B , C D 为直径的圆 M ,圆 N ( M , N 为圆心)的公共弦所在的直线记为 l . (I)若 k 1 > 0 , k 2 > 0 ,证明; F M ⇀ · F N ⇀ < 2 p 2 ; (II)若点 M 到直线 l 的距离的最小值为 7 5 5 ,求抛物线 E 的方程.