.(1)人坐在有八个座位的一排上,若每人的左右两边都要有空位,则不同的坐法的种数为几种?(2)甲、乙、丙人站在共有级的台阶上,若每级台阶最多站人,同一级台阶上不区分站的位置,则有多少种不同的站法?(3)现有个保送大学的名额,分配给所学校,每校至少个名额,问名额分配的方法共有多少种?
如图,四棱锥的底面为矩形,且,,, (Ⅰ)求证:平面平面; (Ⅱ)求直线与平面所成角的正弦值
如图,在中,点在边上,,,. (Ⅰ)求的值; (Ⅱ)求的面积.
设,圆:与轴正半轴的交点为,与曲线的交点为,直线与轴的交点为. (1)用表示和; (2)若数列满足:. ①求常数的值使数列成等比数列; ②比较与的大小.
设,函数. (1)讨论函数的单调区间和极值; (2)已知和是函数的两个不同的零点,求的值并证明:.
已知圆,圆,圆,关于直线对称. (1)求直线的方程; (2)直线上是否存在点,使点到点的距离减去点到点的距离的差为,如果存在求出点坐标,如果不存在说明理由.