如图,四边形是正方形,平面,,,,,分别为,,的中点.(1)求证:平面;(2)求平面与平面所成锐二面角的大小.
已知矩阵M=,其中a∈R,若点P(1,-2)在矩阵M的变换下得到点P'(-4,0), (1)求实数a的值. (2)求矩阵M的特征值及其对应的特征向量.
求矩阵M=的特征值和特征向量.
已知2×2矩阵A有特征值λ1=3及其对应的一个特征向量α1=,特征值λ2=-1及其对应的一个特征向量α2=,求矩阵A的逆矩阵A-1.
已知△ABC,A(-1,0),B(3,0),C(2,1),对它先作关于x轴的反射变换,再将所得图形绕原点逆时针旋转90°. (1)分别求两次变换所对应的矩阵M1,M2. (2)求△ABC在两次连续的变换作用下所得到的△A'B'C'的面积.
已知M=. (1)求逆矩阵M-1. (2)若向量X满足MX=,试求向量X.