如图,四边形ABCD为矩形,四边形AEDF为菱形.(1)求证:△ABE≌△DCE;(2)试探究:当矩形ABCD边长满足什么关系时,菱形AEDF为正方形?请说明理由.
如图,在直角梯形ABCD中,AB∥DC,AB⊥BC,∠A=60°,AB=2CD,E、F分别为AB、AD的中点,联结EF、EC、BF、CF.四边形AECD的形状是 ;若CD=2,求CF的长.
小明从地出发向地行走,同时晓阳从地出发向地行走,如图所示,相交于点M的两条线段分别表示小明、晓阳离A地的距离(千米)与已用时间(分钟)之间的关系,小明与晓阳相遇时,晓阳出发的时间是 ;求小明与晓阳的速度。
已知一次函数的图像经过点A(1,0)和B(),且点B在反比例函数的图像上.求一次函数的解析式;若点M是轴上一点,且满足△ABM是直角三角形,请直接写出点M的坐标.
如图,∠ACB=∠CDE=90°,B是CE的中点,∠DCE=30°,AC=CD.求证:AB∥DE.
在一个三角形中,如果一个角是另一个角的2倍,我们称这种三角形为倍角三角形.如图28-1,倍角△ABC中,∠A=2∠B,∠A、∠B、∠C的对边分别记为a,b,c,倍角三角形的三边a,b,c有什么关系呢?让我们一起来探索.我们先从特殊的倍角三角形入手研究.请你结合图形填空:如图28-4,对于一般的倍角△ABC,若∠CAB=2∠CBA ,∠CAB、∠CBA、∠C的对边分别记为a、b、c,a、b、c三边有什么关系呢?请你作出猜测,并结合图28-4给出的辅助线提示加以证明.