已知数列 a n 与 b n 满足 b n + 1 a n + b n a n + 1 = - 2 n + 1 , b n = 3 + - 1 n - 1 2 , n ∈ N * , 且 a 1 = 2 .
(1)求 a 2 , a 3 的值 (2)设 c n = a 2 n + 1 ﹣ a 2 n - 1 , n ∈ N * ,证明 c n 是等比数列 (3)设 S n 为 a n 的前 n 项和,证明 S 1 a 1 + S 2 a 2 + ⋯ + S 2 n - 1 a 2 n - 1 + S 2 n a 2 n ⩽ n - 1 3 n ∈ N *
解不等式:
已知函数满足,且有唯一实数解。(1)求的表达式 ;(2)记,且=,求数列的通项公式。(3)记 ,数列{}的前 项和为 ,是否存在k∈N*,使得对任意n∈N*恒成立?若存在,求出k的最小值,若不存在,请说明理由.
已知数列{an}的前n项和为Sn,且an是Sn与2的等差中项,数列{bn}中,b1=1,点P(bn,bn+1)在直线上。(1)求a1和a2的值; (2)求数列{an},{bn}的通项an和bn;(3)设cn=an·bn,求数列{cn}的前n项和Tn.
某外商到一开发区投资72万美元建起一座蔬菜加工厂,第一年各种经费12万美元,以后每年增加4万美元,每年销售蔬菜收入50万美元。(1)若扣除投资及各种经费,则从第几年开始获取纯利润?(2)若干年后,外商为开发新项目,按以下方案处理工厂:纯利润总和最大时,以16万美元出售该厂,问多长时间可以出售该工厂?能获利多少?
在△中,内角,,对边的边长分别是,已知.(1)若△的面积等于,求,;(2)若,求△的面积.