某外商到一开发区投资72万美元建起一座蔬菜加工厂,第一年各种经费12万美元,以后每年增加4万美元,每年销售蔬菜收入50万美元。(1)若扣除投资及各种经费,则从第几年开始获取纯利润?(2)若干年后,外商为开发新项目,按以下方案处理工厂:纯利润总和最大时,以16万美元出售该厂,问多长时间可以出售该工厂?能获利多少?
( 本小题10分) k代表实数,讨论方程所表示的曲线.
(本小题8分) 求双曲线的实轴和虚轴的长、顶点和焦点坐标、离心率、渐近线方程:
(本小题满分14分) 如图,已知椭圆的离心率为,短轴的一个端点到右焦点的距离为.设直线与椭圆相交于两点,点关于轴对称点为. (1)求椭圆的方程; (2)若以线段为直径的圆过坐标原点,求直线的方程; (3)试问:当变化时,直线与轴是否交于一个定点?若是,请写出定点的坐标,并证明你的结论;若不是,请说明理由.
(本小题满分12分) 已知数列. (1)当为何值时,数列可以构成公差不为零的等差数列,并求其通项公式; (2)若,令,求数列的前项和.
(本小题满分12分) 已知是边长为2的等边三角形,平面,,是上一动点. (1)若是的中点,求直线与平面所成的角的正弦值; (2)在运动过程中,是否有可能使平面?请说明理由.