在平面直角坐标系xOy中,直线l:x=-2交x轴于点A,设P是l上一点,M是线段OP的垂直平分线上一点,且满足∠MPO=∠AOP. (1)当点P在l上运动时,求点M的轨迹E的方程; (2)已知T(1,-1),设H是E上动点,求|HO|+|HT|的最小值,并给出此时点H的坐标; (3)过点T(1,-1)且不平行与y轴的直线l1与轨迹E有且只有两个不同的交点,求直线l1的斜率k的取值范围.
己知长方体的三条棱长分别为a、b、c,其外接球的半径为 (1)求长方体体积的最大值: (2)设,求的最大值
己知抛物线的顶点M到直线(t为参数)的距离为1 (1)求m; (2)若直线与抛物线相交于A,B两点,与y轴交于N点,求的值.
(本小题满分10分)选修4-l:几何证明选讲如图,是ABC的外接圆,D是的中点,BD 交AC于E (1)求证:: (2)若,O到AC的距离为1,求的半径
已知函数(d为常数) (1)当对,求单调区间; (2)若函数在区间(0,1)上无零点,求a的最大值.
己知曲线与x袖交于A,B两点,点P为x轴上方的一个动点,点P与A,B连线的斜率之积为-4 (1)求动点P的轨迹的方程; (2)过点B的直线与,分别交于点M ,Q(均异于点A,B),若以MQ为直径的圆 经过点A,求AMQ的面积.