已知等差数列 { a n } 中, a 1 = 1 , a 3 = - 3 . (Ⅰ)求数列 { a n } 的通项公式; (Ⅱ)若数列 { a n } 的前 k 项和 S k = - 35 ,求 k 的值.
(本小题满分12分)数列中,,且点在直线上.(Ⅰ)设,求证:是等比数列;(Ⅱ)设,求的前项和.
(本题满分12分)已知函数.(1)求在上的最大值;(2)若对任意的实数,不等式恒成立,求实数的取值范围;(3)若关于的方程在上恰有两个不同的实根,求实数的取值范围.
(本题满分12分)已知点都在直线上,为直线与轴的交点,数列成等差数列,公差为1.()(1)求数列,的通项公式;(2)求证: …… + (2,)
(本题满分12分)在中,内角对边的边长分别是,已知,.(Ⅰ)若的面积等于,求;(Ⅱ)若,求的面积.
(本题满分12分)某工厂在试验阶段大量生产一种零件。这种零件有、两项技术指标需要检测,设各项技术指标达标与否互不影响。若有且仅有一项技术指标达标的概率为,至少一项技术指标达标的概率为.按质量检验规定:两项技术指标都达标的零件为合格品.(Ⅰ)求一个零件经过检测为合格品的概率是多少?(Ⅱ)任意依次抽出5个零件进行检测,求其中至多3个零件是合格品的概率 是多少?(Ⅲ)任意依次抽取该种零件4个,设表示其中合格品的个数,求与.