在极坐标系中,已知圆ρ=4sinθ与直线ρcosθ=4,求圆上一点到直线的距离的范围。
已知双曲线 E: x2 a2 - y2 b2 =1(a>0,b>0) 的两条渐近线分别为 l 1 :y=2x, l 2 :y=-2x . (1)求双曲线 E 的离心率; (2)如图, O 为坐标原点,动直线 l 分别交直线 l 1 , l 2 于 A,B 两点( A,B 分别在第一,四象限),且 △OAB 的面积恒为8,试探究:是否存在总与直线 l 有且只有一个公共点的双曲线 E ?若存在,求出双曲线 E 的方程;若不存在,说明理由.
为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额. (1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求 ①顾客所获的奖励额为60元的概率 ②顾客所获的奖励额的分布列及数学期望; (2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.
在平行四边形 A B C D 中, A B = B D = C D = 1 , A B ⊥ B D , C D ⊥ B D .将 △ A B D 沿 B D 折起,使得平面 A B D ⊥ 平面 B C D ,如图. (1)求证: A B ⊥ C D ; (2)若 M 为 A D 中点,求直线 A D 与平面 M B C 所成角的正弦值.
已知函数 f x =cosx sin x + cos x - 1 2 . (1)若 0<α< π 2 ,且 sinα= 2 2 ,求 f α 的值; (2)求函数 f x 的最小正周期及单调递增区间.
如下图所示,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成的角为60°. (1)求证:AC⊥平面BDE; (2)求二面角F-BE-D的余弦值; (3)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.