如图,,为圆柱的母线,是底面圆的直径,,分别是,的中点,.(1)证明:;(2)证明:;(3)假设这是个大容器,有条体积可以忽略不计的小鱼能在容器的任意地方游弋,如果鱼游到四棱锥 内会有被捕的危险,求鱼被捕的概率.
如图是在竖直平面内的一个“通道游戏”.图中竖直线段和斜线段都表示通道,并且在交点处相遇,若竖直线段有一条的为第一层,有二条的为第二层, ,依次类推.现有一颗小弹子从第一层的通道里向下运动,若在通道的分叉处,小弹子以相同的概率落入每个通道.记小弹子落入第层第个竖直通道(从左至右)的概率为,某研究性学习小组经探究发现小弹子落入第层的第个通道的次数服从二项分布,请你解决下列问题.(Ⅰ)试求及的值,并猜想的表达式;(不必证明)(Ⅱ)设小弹子落入第6层第个竖直通道得到分数为,其中,试求的分布列及数学期望.
如图,在长方体中,已知上下两底面为正方形,且边长均为1;侧棱,为中点,为中点,为上一个动点.(Ⅰ)确定点的位置,使得;(Ⅱ)当时,求二面角的平面角余弦值.
已知等差数列的首项,公差.且分别是等比数列的. (Ⅰ)求数列与的通项公式;(Ⅱ)设数列对任意自然数均有 成立,求 的值.
已知A、B、C为的三个内角且向量与共线.(Ⅰ)求角C的大小;(Ⅱ)设角的对边分别是,且满足,试判断的形状.
设.(1)解不等式;(2)若对任意实数,恒成立,求实数a的取值范围.