如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是 三角形;(2)如图,△OAB是抛物线的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由;(3)在(2)的条件下,若以点E为圆心,r为半径的圆与线段AD只有一个公共点,求出r的取值范围.
如图8,在△ABC中,D,E在直线BC上.(1)若AB=BC=AC=CE=BD,求∠EAC的度数;(2)若AB=AC=CE=BD,∠DAE=100°,求∠EAC的度数.
如图7,在边长为a的正方形纸片的四个角都剪去一个长为m、宽为n的矩形.(1)用含a,m,n的式子表示纸片剩余部分的面积;(2)当m=3,n=5,且剩余部分的面积等于229时,求正方形的边长a的值
先化简,再求值:,其中
如图6,AB⊥CB,DC⊥CB,E,F在BC上,AF=DE,BE="CF." 求证:∠A=∠D.
已知函数y="(k+1)x" + k-1.(1)若函数的图象经过原点,求k的值; (2)若函数的图象经过第一、三、四象限,求k的取值范围.